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Abstract. The strain-field expression of a small dislocation loop (SDL) in an elastically isotropic 
medium is extended to the case of icosahedral quasicrystals. The diffraction contrast images 
of SDL are simulated systematidly for different experimental and SDL paramefen. The main 
results of the simulation are explained semiquantitatively by the MntraSt expressions for the SDL 
deduced by a pemrhtion matment. 

1. Introduction 

Since the discovery of the AI-Mn icosahedral quasicrystal (IQC) (Shechtman et a! 1984), 
the defects in quasicrystals (Qc) have been extensively studied both theoretically and 
experimentally. In the framework of either a density-wave description or a unit-cell picture, 
the theories of elasticity and dislocation defects in QC were proposed and discussed by 
Levine et a1 (1985), Luhensky and Ramaswamy (1986), Socolar et a1 (1986) and De and 
Pelcovits (1987). A generalized Volterra process, which implies the insertion or removal 
of a half-hyperplane in a six-dimensional (6D) hypercubic lattice and subsequent projection 
into the three-dimensional (3D) physical space, was used to produce a dislocation in an IQC 
by Bohsung and Trebin (1987), Kleman (1988) and KIeman and Sommers (1991). These 
theoretical studies demonstrate that, in order to describe a defect in QC, it is necessary to 
introduce a phason strain field RI (r) in addition to the conventional phonon strain field RI, (r)  
in crystals; hence six parameters are needed to index the Burgers vector of a dislocation. 
Dislocations in QC have also been observed experimentally either directly in high-resolution 
electron microscopy (HREM) images (Hiraga 1987) or by means of HREM image processing 
(Wang et al 1987). By using the methods of diffraction contrast analysis and higher-order 
Laue zone (HOLZ) lines, dislocations, stacking faults and dislocation networks have been 
analysed (Devaud-Rzepski et ol 1989, Zhang and Urban 1989, Zhang et a1 1990, Yan et al 
1992, Wang et a1 1993, Yan and Wang 1993, Dai 1993). 

Recently, we have observed and studied systematically a small dislocation loop (SDL) 
in an AI-MnSi IQC by the method of diffraction contrast (Wang et 4l 1991). In crystals, 
for SDL the variations of the contrast image characteristics with different parameters (e.g. 
the Burgers vector b ,  loop plane normal n.  depth zo of the SDL, foil thickness t ,  foil normal 
F, electron beam incident direction B, diffraction vector g and deviation parameter w )  
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have been investigated in detail by Wilkens and his colleagues Wilkens and Riihle 1972, 
Haussermann et a1 1972, Wilkens and Foll 1978, Wilkens 1978) and Saldin et a1 (1978). 
According to these results, the type and distribution of SDL in many metals have been 
identified successfully. In order to deepen our understanding of the characteristics of SDL in 
QC, in this paper we simulate systematically the diffraction contrast images of SDL in IQC for 
different parameters. The main results of the simulation are explained semiquantitatively 
by the contrast expressions for the SDL deduced by a perturbation calculation. 

Z G Wang and R Wang 

2. Strain field of the small dislocation loop in icosahedral quasicrystals 

The ideal and defect-free icosahedral quasilattice can be constructed by projection from a 
periodic hypercubic lattice E(q  in 6D space S(@ onto 3 0  physical space S$ (our 3D world) in 
such a way that the projected basis vectors (ei) (i = 1, . . . ,6) coincide with six icosahedral 
basis vectors along the six fivefold axes of an icosahedron. Let [a') (i = 1, . . . , 6 )  denote 
the standard orthogonal basis in Sc6). The projection can be performed with a projection 
matrix PII: 

(et.. . . = PI~(zI, . .. , z ~ ) ~  (21) 

where the superscript T means transpose of the mabix. Another projection matrix 

PL = I- P, (2.2) 

(I is a unit matrix) produces a set of projected basis vectors (e l ]  in 3 0  pseudo-space SL 0) , 

(2.3) 

which is orthogonal to Sf): 

1 T (eL, . . . , = PL(z1. . . . , &) . 
So any position vector i in $(6) can be expressed as the direct sum of its two components 
rll and r L  respectively in Sr )  and Sp': 

i = rll r~ = Pll(i) d PL( i ) .  (2.4) 

The icosahedral quasilattice can be obtained by projecting those hyperlattice points with 
the position vectors i E E @ )  if their orthogonal components r L  E CI, where CL is a unit 
triacontahedron in S?'. 

Dislocations in Qc are best defined in the high-dimensional space where full periodicity 
is recovered, and the dislocations can be constructed in the usual way by the Volterra process 
as singular topological defects characterized by a Burgers vector h of the hyperlattice. Then 
the arrangement of the defective lattice in our 3D space can be obtained by projection from 
E(" to S F .  If a dislocation is induced into 6D hypercubic lattice E(6), the hyperlattice 
points will produce a shift from their proper position i to i' = i +R. The 6D displacement 
field R can be written as 

6 
R = (RI, Rz, R3, R4, Rs, Ra) = Rii' 

i=l 

where R, ( i  = I ,  . . . , 6) are six components of R in S(6).  

(2.5) 
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The displacement field k must fulfil an important requirement in order to be consistent 
with the basic property of 1QC of being structurally independent of the actual location of 
the physical space Sf) in the 6D space S" (local isomorph classes): the displacement field 
I? enerated by the dislocation must be invariant by any translation along the pseudo-space 

rll only. As a consequence, 
S, (8 , i.e. ' the displacement field R in 6D space S(@ is a function of the physical space variable 

6 

fi(r11) = (Rl(rll), Rz(rof, Rdrll), R 4 ( q f S  Rdrll), %(r[i)) = x R ; ( q ) Z i .  

since i' =e; @ e l  (i = 1 , .  . . ,6) we have 

(2.6) 
i=l 

where 

are two components of k(rl1) respectively in physical and perpendicular (pseudo-) spaces. 
The parallel component RII(rII) is responsible for the elastic deformation around the 
dislocation as in conventional crystals (phonon strain) while the perpendicular component 
RI (rll) leads to a local rearrangement of the basic tiles (phason strain) around the dislocation. 
Therefore, Rll((rll) and RL(rll) are spanned with the same span coefficients in two different 
representations, i.e. in physical space basis (ei] and pseudo-space basis (el). 

According to Ding (1993). the equilibrium equations for QC expressed by displacements 
R l h )  and W r o )  are 

(2. loa) 

(2.1Ob) 

where cijkt and Kijkf are elastic tensors corresponding to the phonon and phason seains 
respectively, Sju is the elastic tensor coupling Rn(rl1) to Rl(rl l ) ,  Rf; and R: are the kth 
components of Rn(rll) and Rl(rll), and fi (or g;) is the ith component of the body force per 
unit volume. By neglecting the coupling term (that is Pij~.f = 0) equation (2.1Oa) reduces 
to the following simpler form 

(2.11) 

which is the same as the equilibrium equation of classical elasticity (Hirth and Lothe 1968). 
In elastic isotropic crystals, the displacement field R(r)  of a SDL is expressed as (Kroupa 

1963) 

CijkfajarR; + fi = 0 
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where S is the loop area, r the position vector from the centre of the SDL, n the unit vector 
normal to the loop plane and v the Poisson ratio. 

It is well known (e.g. Wang and Kuo 1990) that cubic point group 23 is a subgroup of 
icosahedral point group 235, and crystals with symmetry 23 have three independent elastic 
constants. Using any fivefold rotation operator in point group 235, we can prove there are 
only two independent elastic constants for the phonon strain in IQc. Consequently, when 
neglecting the coupling term the phonon seain field Rll(rl1) of a SDL in IQc has the same 
expression as the formula (2.12): 

Z G Wang and R Wang 

(2.13) 

where bll and All are the components in the physical space of the Burgers vector d = bll @ b ~  
and unit vector ti = "11 fB n l  of the loop plane normal, respectively, and 81 and n~ are 
the corresponding perpendicular components. The exact expression Rl(ru) is unknown. 
As a first approximation, we may express the vectors and rll in equation (2.13) by six 
components 

Then by using equations (2.7) to (2.9) Rl(r1l) may be expressed as 

where 

(2.14) 

(2.15) 

(2.16) 
i = l  i=l 

Obviously the coefficients ni and xi in equations (2.14) and (2.16) are not unique, because 
it is impossible to determine uniquely the six components ni (or x i )  from a threecomponent 
vector nil (or rll). In the conventional crystals, for a vacancy (or interstitial) SDL we have 
n . b > 0 (or n . b .c 0). Although a dislocation in IQC cannot be regarded as the 
insertion or removal of a half-plane of atoms, the effect of contraction (or expansion) in the 
neighbourhood of a SDL still exists when nil bll > 0 (or nII . b11 .c 0). just like the case in 
crystals. So here we still call them 'vacancy' (rill -bll > 0) or 'interstitial' (nII .bll < 0) type 
SDL. 
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Figure 1. Won-projection dia- 
p m s  of the IQC pelpendicular Lo a 
fivefold axis [ O l O O O O l :  (a) per- 
fect Ipc,(b) IQC wnbhing a SDL at 
Owilhbllrill [lOOlOO];(c)only m. wnsiderinrr the ohason strain (RI# = . I, - .  
0); (d) only wnsidering the phonon 
svaio (RI = 0). 

Figure 1. Section-projection dia- 
g” of the IQC perp~dinrlar to a 
twofold axis [OOlO IO]: (a) per- 
fect IQC; (b) IQC containing a SDL at 
 withi ill rill [100100];(c)only 
wnsidering the phason strain (RI = 
0); (d) only wnsidering the phonon 
strain (RI = 0). 

3. 
dislocatioo loop 

Section-projection diagrams of icosahedral quasicrystals containing a small 

In order to describe diagrammatically the lattice model of a SDL we provide here several 
groups of section-projection diagrams of the IQC containing a SDL with i IIii 11[100 1001 
(vacancy type) according to the method proposed by Katz and Duneau (1986). Figures 1, 
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Figure 3. ktion-projection di- 
grams of Ule IQc perpendicuLv to a 

fed iQc;Jb) IQC contnining a SDL nl 
0 withbll Ell [lOOIOO]; (c)  only 
considering the p h o n  s a i n  (Rll = 
0); ( d )  only considering the phonon 
stran (RI = 0). 

lhreefoid axis [o 1 I O  i 01: (a) per- 

2 and 3 are such section diagrams perpendicular to the fivefold axis [0 1 0000], twofold 
axis [OO 10 i 01 and threefold axis [0 1 IO TO], respectively. Parts (a) of these figures 
are all section diagrams of the perfect icosahedral quasilattice, which appear as perfect 
five, two- and threefold generalized Penrase tiling. Parts (b) of these figures show the 
quasilattice sections containing a SDL centred at the point 0. In order to show the phason 
strain and phonon strain fields separately, we provide the contribution of the phason strain 
RI in parts (c) and that of the phonon strain RI1 in parts (d) of these figures. From these 
figures it is obvious that the phonon displacement field Rl causes the quasilattice points 
in the neighbourhood of the SDL to shift towards the centre of the SDL mainly along the 
fbll directions, and the phason strain field RI  causes the rearrangement of some quasilattice 
points. These may be seen more clearly in figure 4, where full lines relate to the generalized 
Penrose tiling perpendicular to the threefold axis of the perfect icosahedral quasilattice while 
broken lines show that containing the SDL. The rearrangement of the quasilattice points 
induces mistakes of the tiling. 

4. Simulation of contrast images of small dislocation loops in icosahedral qwicrystals 

The dynamical theory of electron diffraction for crystals containing defects can be extended 
to quasicrystals if the contribution g R to the phase factor caused by the defects is replaced 
by d .k ,  where is a 6D reciprocal vector (Wang and Cheng 1987). In section 2 we have 
obtained the strain-field expressions (2.13) and (2.15) of a SDL in the 1Qc; then the diffraction 
contrast images can be calculated out from the extended Howie-Whelan equations. Noting 
the uncertainty of the coefficients ni and xi we tried to simulate the contrast image by using 
different ni and xi values (Wang and Wang 1992). Our systematic simulation shows that 
the concrete phason strain expression has very little effect on the simulated contrast images. 
This result is not a surprise because g l  is very small compared with corresponding gu for 
strong reflections and hence we have lgL . R I !  < lgll . RIII. 
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Figure 4. Section-projection dia- 
gram of the lac perpendicular to 
the threefold axis [0 I 1 0 i 01 show- 
ing the contributions (broken lines) 
of (a) the p h o n  strain RI and (b)  
the phonon strain RII of a SDL in IQC 

(full lines are the generalized Penmse 
tiling of the perfect lac). 

4. I .  Deviation paramerer oscillation 

The results of our simulation show that a loop with its centre close to one of the foil 
surfaces appears as a black-white (B-W) contrast under the dynamical two-beam condition. 
The orientation of the B-W vector 1 (the vector joining the centre of the black lobe to 
the centre of the white lobe) is almost independent of the direction of d and lies parallel 
(or antiparallel) to the Burgers vector b,, or to its projection onto the image plane (i.e. the 
plane perpendicular to the electron beam direction E ) .  With the variation of the deviation 
parameter w ,  the contrast of the SDL changes as shown in figure 5. Figure 5(a) shows the 
simulated bright-field (BF) contrast images of the SDL near the top surface, with the following 
parameters: dll611[100100], Bll[l00001], t11[320001], t = 4SCg with Cg being the 
extinction distance, 20 = 0.2.5eg and w = -3.5, -1.5, 0.0, 1.25 and 3.5 respectively from 
the left-hand side to the right-hand side. It shows an oscillation of B-W contrast with w ,  
i.e. the direction of B-W vector 1 reveals reversal with w increasing from negative value 
(= -3.5) to positive value (= 3.5). Figure 5(b) shows the simulated BF images of the SDL 
near the bottom surface (ZO = 4.25& corresponding to figure 5(a). It is ohvious that the 
B-W contrast from the SDL close to the bottom surface is reversed compared with that close 
to the top surface (figure 5(u)) .  Figure 5(c) shows experimental BF images observed in the 
annealed AI-MnSi IQC, which are in good agreement with the theoretically simulated one 
shown in figure 5(b). 

Figure 5. The variation of BF 
wnmt images of a SDL in lac with 
the deviation parameter U): (a )  the 
simulated images of the SDL near the 
top surface; (b) the simulated images 
of the SDL near the bottom surface; 
(c) the experimental images observed 
in annealed AI-MnSi lac. 
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4.2. Depth osciiiation 

There also exists a depth oscillation effect of the B-W contrast. Figure 6(a) shows the 
variation of BF image contrast of a vacancy SDL with its depth at different deviation 
parameters w. When w = 0, the depth oscillation phenomenon is the same as that in the 
case of crystals, revealed by Wtlkens (1978). The regions close to the foil surface are divided 
into layers LI, L2 and L3 with a thickness of 0.3.&, 0.45eg and OS&, respectively. Near 
the boundaries of these layers the image appears as a dot. It becomes a B-W lobe in the 
middle of each layer and the sense of the lobe reverses from one layer to the neighbouring 
layer. For loops in the middle of the foil, the contrast appears as a black speckle of irregular 
shape. When w = 11.5, the regions close to the foil surface are divided into six layers with 
a layer thickness of about 0.25eg for each layer, and the depth oscillations extend deeper 
into the foil. In this case, the oscillation periodicity (the layer thickness) becomes smaller 

Z G Wang and R Wmg 

than that when w = 0. 

w = - 1 . 5  0 . 0  1.5 

bright field 

g -  
D . D . D 

D 
D 

D 

m 
0 0 

n 
0 

0 a 
bottom 

dark field 

Figure 6. Schematic plol of lhe depth oscillation for different deviation p m e t e r s  w of lhe 
B-W contmt figures from SDL of vacancy type in lac; the contrast figures are drawn at those 
deplh posidons at which the loop centres were assumed ( a )  lhe BF contrast figures; (bl the OF 
comas1 figures. 

4.3. Symmetry properties 

Figure 6(b) shows the calculated dark-field (DF) images of the SDL at different depths and 
with different deviation parameters w. By comparing figures 6(a) and 6(b) it is apparent 
that the BF and DF images are similar when the SDL is close to the top surface while 
they are complementary when the SDL is close to the bottom surface. Moreover, the DF 
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contrast is nearly symmetrical about the middle plane of the foil while the BF contrast is 
antisymmetrical. Such behaviour coincides with the well known symmetry properties of 
diffraction contrast (Huscb et al 1965). 

4.4. Effect of the directions of bll and "11 

For convenience of identifying the directions of the Burgers vectors b( and the habit plane 
normal "11 of the SDL by means of the diffraction contrast technique, we have carried out 
a series of simulations by varying the directions of the Burgers vector bll and the habit 
plane normal tq of the SDL with respect to the directions of the incident beam B and the 
diffraction vector gll. The results are shown in figure 7 where each BF contrast image lies 
at the position of the stereographic projection of the Burgers vector bll, which is taken to be 
parallel to rill. If the angle between bll(q) and gl1 is not large ( g  459 ,  the contrast image 
consists of one black and one white lobe whose B-W vector I lies parallel (or antiparallel) 
to the projection of bll onto the image plane. If bll(nl1) is nearly perpendicular to gll and 
the angle between bII(nil) and B is large enough, the contrast image is of 'buttefiy' shape 
consisting of three pairs of B-W lobes, in which the B-W lobe parallel (or antiparallel) to 
gll is weaker and narrower than the other two pairs of B-W lobes. When the angle between 
bll(nll) and gll is about 50-80" and the angle between bll(nll) and B is large enough, the 
contrast image appears as two pairs of B-W lobes. The main B-W lobe has its I direction 
nearly parallel (or antiparallel) to the projection of the bll(q) direction onto the imaging 
plane while the weaker B-W lobe has its 1 nearly parallel (or antiparallel) to the gll direction. 
When the angle between b l l ( q )  and B is small, complicated contrast images result. 

Figure 7. The contrast variation with tk 
direction of bU and "U of SOL. 

5. Analytical expression of the diffraction contrast of the small dislocation loop 

The analytical calculations of the two-beam dynamical theory for SDL in crystals proposed 
by Wilkens (1978) and Wang (1983) can only be used for the case of w = 0 (dynamical 
imaging condition). Now we extend these calculations to the case of the kinematical 
condition (w # 0) as follows. We start from the equations (11.9) for the modified excitation 
coefficients Jr"" (i  = I ,  2)  given by Hirsch et al (1965): 

dJr""/dz = -2ni(d/dz)Q . R) sin(f312) cos(P/2) e~p(2xiAkz)\lr'(~) 

dJr""/dz = -2ni(d/dz)@ . R) sin(@/2) cos(pl2) exp(-ZniAkz)Jr'(') (5.1) 
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where here and afterwards ,¶, w and s are deviation parameters, w = cot p, w = seg. and 

2 G Wang and R Wang 

Ak = (1 + w2)'/*/Cg +i/[t;(l + w ~ ) ' / ~ ] +  ( l / z ) i  -Rcos,5'. (5.2) 

5; is the anomalous absorption distance and usually we have eg <<e;. 
The 'width' A of the strain field R of a SDL is very small (A << k). If the depth a 

of the SDL lies not too close to the surfaces of the foil specimen (a z A) and we do not 
consider the contrast at positions near the centre of the SDL, then we have 

i . R << 1 (d/dz)i . R << l/A (5.3) 

and the boundary condition at the top surface: 

+'(I)@) = cos(,¶/2) +"2)(0) = sin(,8/2). (5.4) 

Under the condition (5.3) we can treat equation (5.1) by means of the first-order perturbation 
calculation that equation (5.1) may be integrated directly by replacing @'(I) and e'@) 
appearing on the right-hand sides by their values at the top surface of the foil (see 
equation (5.4)): 

@ ( t )  = cos - B (1 - 2xisin'; 1' $-Q .k) exp(2niAkz) dz 
2 

. k) exp(-ZniA.kz) dz 

We introduce a new integral variant < = z - a. Since A < a the integral limits for C 
can be taken as being from -CO to +CO. Noticing condition (5.3) and using the theorem 
of integration by parts, equation (5.5) can be further simplified as: 

The amplitude of the transmitted wave is proportional to 
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where 6; is the mean absorption distance. 
When w 2 0 the contribution of the first term in equation (5.7) to uo(t) in much 

larger than that of the second term, and hence we obtain the approximate expression for the 
contrast function c as follows: 

When w < -1.5 the contribution of the second term in equation (5.7) is larger and we 
have the contrast function: 

(5.9) 

6. Discussion 

When the deviation parameter w Y 0 (two-beam dynamical condition), the depth oscillation, 
the symmetry properties and the effect of the directions of bo and rill. as described in 
section 4, are all the same as in the case of crystals; see the review written by Wilkens (1978). 
In the case of crystals Wilkens (1978) and Wang (1983) explained all these phenomena 
semiquantitatively by a first-order perturbation treatment of the two-beam dynamical theory. 
According to this theory the B-W lobe contrast comes from the fact that the value of the 
inner product g . R reverses when the position vector r reverses. In the case of the IQC 
the contribution g R to the phase factor of the theory should be replaced by the 6D inner 
product . R = gll .RII @gl .RI,  where gll is the component of 8 in 3D parallel space. For 
strong reflection, gl  is very small compared with the corresponding 811. and hence we have 
g. R N gll . R I [ .  Consequently, all properties of the contrast images that exist in the SDL in 
crystals may be extended to the SDL in QC when strong reflections are excited. 

For the case of w # 0, equations (5.8) and (5.9) show that, when 1w1 increases, the 
factors 1 - w/(l + w2) I f l  in equation (5.8) and 1 + w/(l  + w*)’fl  in equation (5.9) will 
decrease, and the contrast of the SDL tends to zero. When IwI = 1.5, there is a weaker B-W 
lobe contrast, which shows also a depth oscillation with a period of t / ( l  + w2)’/2. This 
period is equal to OS5& when lwl = 1.5, which is in good agreement with the simulated 
results shown in figure 6(u) where the depth oscillation period is about OSEE for lwl = 1.5. 

Figure 6 shows a phase shift phenomenon of the depth oscillation when IwI # 0 (i.e. 
C a cos[Zza(l+ w*)’/’/& -a]). This effect is not included in equations (5.8) and (5.9) 
where we only considered the contribution from one of the two Bloch waves. 

The deviation parameter oscillation observed experimentally (figure 5(c)) and revealed 
by accurate simulation (figures 5(u) and (b)) is the consequence of the different depth 
oscillation periods and different phase shifts for different deviation parameters w. 
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